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USING COMPUTER TECHNOLOGIES TO INVESTIGATION
AND CONSTRUCTION PLANAR CURVES ASYMPTOTES

Abstract. Questions concerning the computer study of the existence of asymptotes
of planar curves and their practical construction are considered. This need is due to
routiness and laboriousness of manual computations and to automate the process. This
problem especially concerns the case of an implicit equation of curves represented by high
order polynomials. A modified version of the justification of the algorithm for constructing
the asymptotes of a planar curves in the case of multiple roots of the leading term of such a
polynomial is proposed. The algorithm is implemented as a computer program.
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Introduction. Researchers often deal with high order algebraic curves
defined by implicit functions. In particular, such problems are the subject of study
not only in differential geometry, but also in algebraic geometry, dynamical
systems and other branches of mathematics. In this paper we propose some
simplified way to justify the algorithm for finding asymptotes of such curves and
its computer implementation. Recall well known facts from [1,2], concerning
asymptotes of planar curves.

Theorem 1. A straight line Ax+By+C =0 is an asymptote of a curve

X=¢(t), y=w() if and only if the following condition holds:
!inT1(A¢(t) +By(t)+C)=0.

Theorem 1 provides a convenient tool for finding asymptotes. Without loss
of generality, suppose that Ax + By + C =0 is not vertical, i.e. B# 0. Then

k=tim¥® _o, @
©T ()
b =1lim(y (t) - ke(t)- (2)
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Vertical asymptotes can be found analogously.

The case of curves defined by implicit equation F(x,y)=0, presents
certain difficulties. Consider such questions when F(x,y) is a polynomial of
degree n.

Theorem 2 [3]. Assume that a curve defined by F(x,y)=0. If the straigt
line y=kx+b is a non vertical asymptote of the curve F(x,y)=0, then the
coefficient k satisfies the equation F (1,k)=0. The coefficient b which

corresponds to such k , can be found
a) by the formula b:%, if k is a simple root of the equation

n

F,@Lk)=0: F,(Lk)=0and F/(Lk)=0;
2
6) from the equation %Fn”(l,k)+ bF.,(Lk)+F, ,(Lk)=0,if k is a

double root of the equation F_(Lk)=0: F (Lk)=F/(Lk)=0, and F _,(1k)=0;

B) there is no asymptote corresponding to such a multiple root k, if
F..(@k)=0.

Main results. We proposed a modified and effective version of proof
theorem 2, different from the original one in [3]. Also we suggested a computer
interpretation results of theorems 1 and 2 on concrete examples, confirming the
advantage of computer tools over the manual labor.

We are going to exposition of our idea of proving Theorem 2. We will
repeat reasoning of [3] until we start using the continuity property of polynomials
of arbitrary degree and pass to limits in infinite sums. The equation of the curve
F(x,y) =0 can be rewritten in the form

Fix,y)=F,Xy)+F_,(xy)+..+F =0, 3

where F(X,y) is a polynomial of degree i, homogeneous with respect to its

arguments. Let us use the change of variables Y, & ~1 Then we get an
X X

equation of our curve in new variables

Fo(Ln)+ &, a(Ln)+..+8"F =0, (4)

Assume that F(x,y)=0 has an asymptote defined by the equation
y =kx+b. Then k=|imm=|im77.

X=X §-0
As we noted above, further our idea is light different from ideas in [3], and
strikingly different from ones in [2]. We propose offer a more concise way the

equations we need, based on continuity of the function F (X, y) as a polynomial.
Namely, pass to limitin (4). Then

0=lim(F, (L7)+ &, 1(Ln)+ ...+ &"Fy) = lim F, (L) = F, (@ lim ) =F (1K)
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Thus we obtain the following equation, from which the coefficient k can be
defined as its root:

F.@Lk)=0. (®)
For finding b consider a point (x, y(x)) on our curve, where y(X) = kx+V.
In new coordinates: 7=k +v&. Since b= Ilim(y(x)—kx) = limv, thisimplies

b= lim YO/ X =K _ 1=
X—>0 1/ x =) é‘

k =limv. (6)
&0

Substitute the point (X,kx+ V), in other words, the point (L k +Vv¢), into

the equation of the curve  F (LK +V&)+&F, (LK +VE)+...+E"F, =0. After

then each polynomial in this sum we expand to Taylor series. Clearly, such
expansions contain finite number of summands. So

F, (LK) +véF, LK)+ &[F, 4 (LK) + V&, (LK) +O(E%) =0.  (7)
Since F,(Lk)=0,then vF/(Lk)+F, (Lk)+0O(&)=0.

The case of simple roots. Assume that the equation (5) admits only simple
roots: F.(1,k) = 0. Passing to limit in the last equality as & — 0 and taking into

account (6), we obtain  bF/(Lk)+F,,(Lk) =0. This yields

Rk

~F/(1LK) ®)

The case of multiple roots. For simplicity consider the case of double roots.
Other cases are analogous. So let (5) to admit roots of multiplicity 2, i.e.

F.(Lk)=0, but F'(1k) #0. Now the formula (8) is not valid. We have to
consider high order terms in (7):

F, (LK) +Vver (Lk)+
+ —(Vi)z F'(LK)+ EF, (LK) + Ve LK)+ E2F,, (LK) + O(£%) =0.

Using (5) and the condition F, (1, k) =0 we get
Vzg " ’ 2
- Rl k)+ Py @)+ Ve L LK)+ &, (LK) +O(6*) = 0.

It is necessary F, (1, k) =0. Otherwise there is no asymptote. Indeed,
F. (@ k) = 0 would lead
164
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0= gng[“% Fr(LK)+ oy (LK) + Ve, (LK) +&F,, (LK) +O(&*)] =

=limF, _,@Lk)-
&0

2
Hence, V? F/(Lk)+vF (LK) +F,,(Lk)+0(&) =0.

Passing to limitas & — 0 we obtain a quadratic equation to detect b :

2
b? F/Lk)+bF,(Lk)+F, ,(Lk)=0. )

Computer interpretation theoretical results. All we need in Maple one
can find in [4]. To demonstrate advantages of Maple consider the following curve

from [1]:

¢(t)=2t+3+$, ¢(t):—t+2+$ (10)

at —oo<t<oo.Obviously,at t —1, t — oo the curve tends to infinite.
Let us introduce (1) and (2). Then calculations on Maple give

Al =4x—19
1 7

AZZ:—?X-F?

Therefore, we have two asymptotes y = 4x —19, y = -0,5x +3,5.

Graphs are:
104 10
AN
AR AT AW EERAE AN
-5
-5
_10_
-10 4
|— Asgymptote Asymptote ‘
Fig. 1. The curve (10) Fig. 2. The curve (10) and its asymptotes

It seems from Fig.2 that y = 4x —19 intersects and even coincides with the
middle part of the curve (20). But this is not so. From
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w(t)—(4x+19)=-9(t—1) we can see that the curve lies lower than the
asymptote y =4x—19 at t >1 and the x-coordinate of a point on the curve tends
to plus infinity at t —1+0. For t <1 the curve lies higher than the asymptote

and X —>—-o0 as t —>1-0.

Calculations on  Maple also confirm, that (10) does not intersect the

asymptote:

> solve({y=kl-0 + bl},1);
{t=1}

However t =1 does not belong to the domain of the equation

w(t) — (44(t) +19) = 0.
For interpretations in the implicit case consider the curve

F(x,y) = 2ax’y —xy’ +2a =0,

obtained in [5] as an isocline of a dynamical system related to the Ricci flow

on generalizes Wallach spaces. Let a=1/6:

166

1

>4 = — -

a "
> P = F(x,y);
P::%xzy—xy2 + %
> n = degree(P)
n:==3

The combination of commands subs, expand and collect transforms the
equation of the curve (11) into the form (4) and derives the equation (5):

z = collect(subs[x: é’expand[ SubS(y:"x.n,P) ]]’ EJ]
X

_ 1 2 1.3
e=7n-n +738
> forifromn by -1to0do F, = coeff(¢,& n —i) enddo

1 2
F3 ZZ?T'I—TI
Fz:ZO
1’7l =0

1
FOI:?

The following commands find roots of (5):

> solo = Solve(Fn, n)
1

lo =0, —
solo '3
>kl = solo[1]; k2 := solo[2];
k1 =0

(11)
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1
2 ==
k 3

As you can see, the leading term of the polynomial (4) has two simple

roots. Therefore, there exist two non vertical asymptotes.
The following commands find their equations:

>subs(n=k1,b-diFn+F ]
n

n—1

1
—b
3
> pl = solve(%, b);
bl =0
> Al =kl-x+ bl
Al =0

dn " 7

1
-—b

3
> b2 == solve(%, b);
b2 =0
> A2 =k2-x+ b2
A2 ;:%x

So computer found two asymptotes y =0, y = %x .

There exist a vertical asymptote x =0 as well, because of

>y = subs[y = L, expand[ M ] ]
© y
12 1 3
Y= 3 60 —0+ 3 0
> solo = solve( coeff (v, »,0),8)
solo =0,3
The graphs are:

|— Agynptote Agytoptote Asyinptote |

Fig. 3. The curve (11) and its asymptotes. The case when (5) has simple roots
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Consider now a curve from [2]:

3 2 2 2
y'—4X°y+2x°+y°  -5x+y+4=0, (12)
Introducing initial data

P=-4xXy+y +2x +) —5x+y+4

n:=3

Since commands are repeating, we show only results:
3 2 2 3

0:=48 +(n—5)& +(n" +2)E+n’ —4n

Fy ::n3 —4n

k1 =0 k2:=2 k3:=-2

The roots are simple in this case too:

Al ::L

2
3
A2 =2x— —
TG
3
A3 =-2x — —
3 X 4

So Maple found asymptotes y =%, y:J_er—% There is no vertical

asymptote:
4 -

-ad
Fig. 4. The curve (12) and its asymptotes. The case when (5) has simple roots

Asymptotes do not meet the curve only at infinity. But on a bounded
segment of variation of the argument they can intersect. Below we show such
points depicted on graphs by circles.

h 3 o 217 0/ v e AT o).
solve({y 2x 4,P],{x,y}j,x0~— 472,eva_lf(/o),y0~— 118,eva[f(%;),
o217 197

T RAAEETT
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Fig. 5. Intersection (12) with the asymptote y - —2x—§-
4

>

solve( {y= 2x — %,P}, {x,y}); x0 = %; evalf(%); y0 = %; evalf (%);
] S §
x0 = oy Y0 : 5

0 1 2 3 4

Fig. 6. Intersection (12) with the asymptote y = gx_§
4

Consider now a curve

X +3x%y —4y® —x+y+3=0. (13)
Calculations give:
1 1
kl =1 =-— =-—
k2 : > k3: >

We are in the case of multiple roots.

Using (8) for the simple root 77 =1 we get
Al =x

Hence, one of the asymptotes is: y = X.

For the multiple root ,, _ _1 the formula (8) is not valid, so we have to find
2

b from the equation (9).
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Checking the condition F_ (1,k) =0 shows existence of asymptotes
>
ifsubs(n =k2,F, _ 1) = 0 then print("There exists an asymptote") end if
"There exists an asymptote"

Therefore they can be found from (9). The corresponding Maple commands
and graphs:

2 2
> subs T‘|=k2,b_'d_2Fn+b'iFn_1 MR
2 dn dn
2 3
6 — —
2
> b2 := solve(%, b);
1 1
b2 =—, -—
27 2
> 42 :=Fk2-x + b2[1]
S SN
A2 = 2x+ >
> A3 = k2-x + b2[2]
B N
A3 = ZX )

(RN
o=

Vi

4

Fig. 7. The curve (13) and its asymptotes. The case when (5) has multiple roots

Conclusion. We have proposed a modified and more efficient version of the
proof of Theorem 2 concerning asymptotes of high-order curves defined by
implicit functions. We also showed the possibility of using computer to perform
routine computations. As noted the case of parametric curves does not present any
difficulty having a simple mathematical apparatus (1) and (2), which is very easy to
program.

Much more complicated is the case of curves defined implicitly by high-
order polynomials. To demonstrate our main idea we restricted ourselves
considering the case of double roots, where the computer performs expansions to
Taylor series and derivations of corresponding equations. The idea can be extended
to the general case. The proposed program also does not claim to be complete. For
example, it does not provide for a procedure of determining the multiplicity of
polynomial's roots and the consequent choice between formulas (8) and (9). While
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this choice is made by the user himself after the computer program makes up a
complicated polynomial equation F,(1,77)=0 and finds its roots. So the program

can be further improved.
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H.A. A6ues, A.K. CerizbaeBa
M.X. Aynamu ameiHOarb! Tapas eHipaik yHusepcumemi, Tapas, KazakcmaH

MA3bIK KNCbIKTAPAbIH ACUMNTOTANAPbIH 3EPTTEY MEH K¥PYFA
KOMMbIOTEP/IIK TEXHO/IOTUANAPAbI NANOANAHY

AHpaTtna. KymbiCTa  KasblK  KWUCbIKTapAblH ~ aCMMNTOTanapbiHbiH,  60/ybIH
KOMMblOTEpZE 3epTTey XKaHe o/lapAbl NpakTMKaAa Kypy CypaKTapbl KapacTbipbliagbl.
KYMbBICTbIH, MaHbI3AbIbIFbI  KONMEH ecenTeynepaiH, Kypaeniniri meH Kypy YpPAiCiH
aBTOMATTaHAbIPY KaKeTTiniriHeH Tyaadpl. Ocipece MyHAan npobnema KUCbIKTapAablH,
YKOFapbl AdpeXKeni KenmywenepmeH anKkblH emMec Typae bepineTiH KafaanblHa KaTbICTbl
3epTrenedi. MymbicTa ocbliHOal KenmylweHiH, 6ac myuweciHiH eceni Tybipnepi 6onfaH
YKafgoanblHAAFbl ACMMMTOTa KYpy aNrOpUTMIH Herisgeyain, moanduKkaumanaHFaH HyCcKachl
YCbIHbI1agbl. ANTOPUTM KOMNbIOTEP/IK Bafgap/iama TypiHAe XKy3ere acblpblifaH.

TipeKk ce3pep: KasblK KWUCbIK, anrebpanblk KMUCbIK, €Ki alHbIManblabl Kenmylle,
Kapananbim Tybip, eceni Ty6ip, acumnToTa.

H.A. A6ues, A.K. Cerusbaesa
Tapa3sckuli peauoHanbHbll yHUsepcumem um. M.X. Aynamu, Tapas, KazaxcmaH

NCNO/Ib30BAHUE KOMMbIOTEPHbIX TEXHOI0MUI
K UCCNNEAOBAHUIO N MOCTPOEHUIO ACMMNTOT NTIOCKUX KPUBbIX

AHHOTaumA. B paboTe paccmaTpuBaloTcA BOMPOCHI KOMMbIOTEPHOrO UCCAeA0BaHUA
CYLLECTBOBAHMA aCMMMTOT MJIOCKMX KPMBbIX M UX MPAKTUYECKOro MOoCTpoeHus. BaxkHoCTb
paboTbl  Bbi3BaHa PYTUHHOCTBIO W TPYAOEMKOCTbIO  PYYHbIX  BbIYUCAEHUA U
HeobX04MMOCTbIO aBTOMaTM3auuMM npouecca noctpoeHus. OcobeHHo 3Ta npobaema
KacaeTcsi CAy4as HEABHOIO YpaBHEHMS KPWBbIX, MNPEACTaBAEHHOrO0 MHOro4Y/eHamu
BbICOKOro nopsagKa. B pabore npeanoxkeHa moanduumpoBaHHas BepcmMa 060CHOBaHUA
aNropuTMa NOCTPOEHMA aCMMMTOT MAIOCKOM KPMBOM B C/lydae KPaTHbIX KOPHEeW BeayLero
yneHa TaKoro MHorouyaeHa. AIropuTM peann3oBaH B BUAE KOMMbIOTEPHOM NPOrpaMmmbl.

KntoueBble cnoBa: naockas Kpueas, anrebpanyeckas KpuBas, MHOTOYNEH OT ABYX
nepemeHHbIX, NPOCTON KOPEHb, KPaTHbI KOpeHb, acCMMNTOTa.
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