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Abstract. The main provisions of the model of longitudinal vibrations of rods are 

presented, taking into ac-count certain phenomena. To construct a model of longitudinal 

vibrations of rods from the system, the method of successive approximation was used. 

Models are based on three components: the basic law or principle of dynamics, a 

hypothesis or basic statement, and a construction algorithm method. 
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Introduction. Models of longitudinal elastic vibrations of rods are used for 

calculations in various fields of science and technology. The geometric parameters 

of the objects under study vary over a wide range - from trains to nanotubes. When 

constructing models of longitudinal vibrations of rods taking into account certain 

phenomena, it is useful to take into account the logic of their construction. Models 

are based on three components: the basic law or principle of dynamics, a 

hypothesis or basic statement, and a construction algorithm method. 

Most of the models of longitudinal vibrations of rods are variations of the 

model of longitudinal vibrations of an ideal one-dimensional line. Newton’s second 

law is used as the main one, written for an element of a material line of 

infinitesimal length cut out by two cross sections, with coordinates and mass, 

Figure 1. 

Research conditions and methods. The resultant forces are determined by the 

forces equivalent to the action of the rejected parts along the axis of the rod. In 

order to maintain the general logic of presentation, it is assumed that the material 

line has an infinitesimal cross-sectional area. Mass of the cut element where is the 

volumetric density of the line material. Let the displacement of a point of a 

material line with coordinate at the moment of time be, then the acceleration of the 

selected element will be determined by the formula. The given relations determine 

the equation. 

Most of the models of longitudinal vibrations of rods are variations of the 

model of longitudinal vibrations of an ideal one-dimensional line. Newton’s 
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second, amdF  , law is used as the main one, written for an element of a 

material line of infinitesimal length cut out by two cross sections xd , with 

coordinates xdx   and x , mass md , Figure 1.  

 

 
 

Fig. 1. Calculation diagram for the model of longitudinal vibrations of a one-

dimensional material line 

 

Conditions and methods of research. v Resultant force F  determined by 

forces equivalent to the action of the rejected parts    xPxdxPF   along 

the axis of the rod x . In order to preserve the general logic of presentation, it is 

assumed that the material line has an infinitesimal cross-sectional area s . Weight 

of cut element xdsmd    where   - bulk density of line material. Let 

 ,xu  displacement of a material line point with coordinate x  at a point in time 

 , then the acceleration of the selected element is determined by the formula 
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If the stresses are caused by linear elastic deformations, then, based on 

Hooke’s law, the relation holds:     ,xE,x   where E  - modulus of 

elasticity of the first kind of material line,  
 

x

,xu
,x




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
  - longitudinal 

relative deformation. 

As a result, equation (1) will take the classical form: 
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If constE  , const  then the equation can be rewritten as: 
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Euler's analysis of equation (4) shows: 

- the solution to the equation can be presented in the form:  

      cxfcxf,xu    

where  cxf  ,   cxf   - indeterminate functions of displacements of 

points of a material line under the influence of longitudinal oscillations moving in 

the positive and negative directions of the coordinate axis, respectively; 

- c  – velocity of propagation of longitudinal vibrations; 

- longitudinal vibrations move in a homogeneous material line without 

distortion of shape and attenuation. 

In order to generalize the equation to the case of longitudinal vibrations of 

inhomogeneous rods, the hypothesis of flat sections was introduced: the sections of 

the rods remain flat during longitudinal vibrations. The consequences of the 

hypothesis can be formulated as follows: 

- all points of the cross section of a straight rod during longitudinal 

vibrations have the same displacements, velocities, accelerations; 

- in the vicinity of the section the stresses and relative strains are equal. 

 

 
 

Fig. 2. Calculation scheme for models of longitudinal dynamic deformation of rods 

 

Equation (2) in this case will determine the dynamics of element B of the rod 

in the direction of the coordinate axis of the cross sections x . 

If we assume that the rod has a variable cross-sectional area  xs , then 

equation (1) will be rewritten as:
 

 
 

2

2















 ,xu
xs

x

,xP
 or 

 

 
 

 
 

2

2






























 ,xu
xs

x

,xu
xsE

x
         (5) 

 

If constE  , const  then the equation will be rewritten as 
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A model of longitudinal vibrations of a rod can be constructed on the basis 

of the theorem on the change in momentum for a continuous medium, while 

maintaining the hypothesis of plane sections and the method of sections. To do 

this, select a rod element limited by the lateral surface and arbitrary flat cross 

sections with coordinates 1x  and 2x , 12 xx   length 12 xxl  . In this case, the 

equation for longitudinal vibrations of a rod of variable cross-section is obtained in 

integral-differential (balance) form: 
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If the upper limit is considered variable xx 2 , then differentiation by the 

upper limit of both parts (7) leads to the model equation according to the 

hypothesis of plane sections (5).  

The equation in the form (7) can give more accurate results when solving 

problems using numerical methods, when the continuous domain of definition of 

the displacement function  ,xu  replaced by a discrete mesh. For example, when 

solving by the finite difference method. 

The above models do not take into account the experimentally established 

law connecting linear relative deformations in the longitudinal and transverse 

directions: 

 

xr            (8) 

 

where   - Poisson's ratio; x  - relative deformation in axial direction; r  - 

relative deformation in the radial direction. 

One of the options for taking this law into account is the introduction of the 

Rayleigh correction, which takes into account the kinetic energy of the radial 

motion of the particles of the rod. While maintaining the hypothesis of plane 

sections and the section method, the model with the Rayleigh correction is usually 

built on the Hamilton-Ostrogradsky variational principle: The actual motion of a 

system with holonomic connections differs from other kinematically possible 

movements in that for it the variations of the action according to Hamilton-

Ostrogradsky, specific for an arbitrary period of time  






0

dLW   equal to zero 

 







0

0dL , ПTL   - Lagrange function, determined by the difference 

between the kinetic N and potential П energies of the system. 

The Lagrange function is determined for a rod element limited by two cross 

sections of length L. The result is: 
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Accordingly, the equation of longitudinal dynamic deformation of a rod of 

variable cross-section takes the form: 
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The Rayleigh correction, in relation to the equation of longitudinal vibrations 

according to the hypothesis of plane sections (3), adds a term linearly related to the 

fourth-order derivative  
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This correction takes into account, to some extent, the geometry of the cross 

section of the rod through the function of the polar moment of inertia  pJ  . The 

equation can be simplified if the mechanical properties of the material E  and   

do not depend on the section coordinates x  and time  . At zero Poisson's ratio, the 

Rayleigh correction is reduced to zero. 

Relatively few solutions to problems using this model are known due to its 

complexity. 

The mechanics of a solid deformed body determines the dynamics of 

element B in the Cartesian coordinate system in displacements by the following 

system of equations: 
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where k  - stress in the direction normal k to the section; kj  - shear stress in 

direction j  in section with the normal k ; ku  - point displacement in direction k ; 

G  - shear modulus, or second modulus of elasticity. 

The equation (12) 
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according to the hypothesis of plane cross sections. 

That is, models based on the hypothesis of flat sections do not take into 

account at least tangential stresses. 

Research results. To construct a model of longitudinal vibrations of rods 

from system (10)-(14), we apply the method of successive approximation. The 

basic statement is that the components of the radial stress in the zero approximation 

are equal to zero: 0y ,  0z . With static longitudinal deformation of the 

rod, this statement is certainly true, as follows from the full formulation of Hooke's 

law. In the case of dynamic longitudinal deformation, the statement can only be 

accepted as a zero approximation. The basic statement is obviously only 

approximately true, so calling the basic statement a hypothesis is apparently 

incorrect due to its obviously approximate nature. 

To construct a rod model, equation (12) for element B is integrated over the 

volume of element A of the rod: 
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where xsd  - area of the element face B perpendicular to the coordinate axis of the 

cross sections x . 
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Thus, the equation for longitudinal vibrations of the deformation of a rod of 

variable cross-section according to this model, to a first approximation, takes the 

form: 
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The equation includes both the Rayleigh correction and a number of others 

relative to the model based on the hypothesis of plane sections. 

If we use the obtained formulas as initial ones and repeat the derivation 

algorithm, we can obtain the equation of longitudinal vibrations in the second 

approximation: 
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where  
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22     - geometric characteristics of flat 

sections. 

Discussion of scientific results. A comparison of equations (17) and (18) 

shows that at the second step of approximation, all terms of the first approximation 

are retained and terms containing derivatives of a higher order are added, which 

determines the convergence of the model algorithm using the method of successive 

approximation to arbitrarily accurate, in the limit, Eq. 

To solve technical problems and compare all the above models, it is enough 

to keep the terms including derivatives no higher than the second order: 
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When replacing xu  on  ,xu , taking into account the ratio  

    12EG ,  the equation will be rewritten as: 
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If the rod is geometrically homogeneous, i.e. the cross section does not 

change along the length,   constxs  , then the equation is transformed to the 

form: 
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coinciding, in structure, with the equation of longitudinal vibrations of a material 

line. The model determines the speed of propagation of longitudinal vibrations 

using a slightly different formula:     11 Ec , than according to the 

hypothesis of plane sections Ec  . For materials with zero Poisson's ratio, 

0 , the equations for all models are the same. 

When introducing a variable 1ct  , which can be interpreted as the 

distance over which the dynamic deformation moves over time  , equation (20) 

will be rewritten as:  
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or, in a more compact form: 
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Conclusion. For definiteness, equation (22) is proposed to be called ORN 

(no radial stress) the equation of longitudinal vibrations of geometrically non-

uniform rods made of homogeneous material under linear elastic deformations. In 

English: RSA (radial stresses are absent) equation of longitudinal vibration of rods 

(bars). 

In the case of inhomogeneities of various kinds, or a nonlinear dependence 

of stresses on deformations, the algorithm for constructing the model is preserved 

with appropriate adjustment of the initial equations of the system. 
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ГЕТЕРОГЕНДІ ӨЗЕКТЕРДІҢ БОЙЛЫҚ ТЕРБЕЛІСТЕРІНІҢ МОДЕЛЬДЕРІ ТУРАЛЫ 

 
Аңдатпа. Белгілі бір құбылыстарды ескере отырып, шыбықтардың бойлық 

тербелісі моделінің негізгі ережелері көрсетілген. Жүйеден өзектердің бойлық 
тербелістерінің моделін құру үшін дәйекті жуықтау әдісі қолданылды.  Модельдер 
үш құрамдас бөлікке негізделген: негізгі заң немесе динамика принципі, гипотеза 
немесе негізгі мәлімдеме, құрылыс алгоритмі әдісі. 
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О МОДЕЛЯХ ПРОДОЛЬНЫХ КОЛЕБАНИЙ НЕОДНОРОДНЫХ СТЕРЖНЕЙ 

 
Аннотация. Изложены основные положения модели продольных колебаний 

стержней с учетом тех или иных явлений. Для построения модели продольных 
колебаний стержней из системы применен метод последовательного приближения.  
Модели основываются на трех составляющих: основной закон или принцип 
динамики, гипотеза или базовое утверждение, метод алгоритма построения. 
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