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ON MODELS OF LONGITUDINAL VIBRATIONS OF
INHOMOGENEOQOUS RODS

Abstract. The main provisions of the model of longitudinal vibrations of rods are
presented, taking into ac-count certain phenomena. To construct a model of longitudinal
vibrations of rods from the system, the method of successive approximation was used.
Models are based on three components: the basic law or principle of dynamics, a
hypothesis or basic statement, and a construction algorithm method.
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Introduction. Models of longitudinal elastic vibrations of rods are used for
calculations in various fields of science and technology. The geometric parameters
of the objects under study vary over a wide range - from trains to nanotubes. When
constructing models of longitudinal vibrations of rods taking into account certain
phenomena, it is useful to take into account the logic of their construction. Models
are based on three components: the basic law or principle of dynamics, a
hypothesis or basic statement, and a construction algorithm method.

Most of the models of longitudinal vibrations of rods are variations of the
model of longitudinal vibrations of an ideal one-dimensional line. Newton’s second
law is used as the main one, written for an element of a material line of
infinitesimal length cut out by two cross sections, with coordinates and mass,
Figure 1.

Research conditions and methods. The resultant forces are determined by the
forces equivalent to the action of the rejected parts along the axis of the rod. In
order to maintain the general logic of presentation, it is assumed that the material
line has an infinitesimal cross-sectional area. Mass of the cut element where is the
volumetric density of the line material. Let the displacement of a point of a
material line with coordinate at the moment of time be, then the acceleration of the
selected element will be determined by the formula. The given relations determine
the equation.

Most of the models of longitudinal vibrations of rods are variations of the
model of longitudinal vibrations of an ideal one-dimensional line. Newton’s
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second, F=dma, law is used as the main one, written for an element of a
material line of infinitesimal length cut out by two cross sections d x, with
coordinates x +d x and x, mass d m, Figure 1.

= P(x+ dx,7) P(x,7)

< < >

x+dx dx X

Fig. 1. Calculation diagram for the model of longitudinal vibrations of a one-
dimensional material line

Conditions and methods of research. v Resultant force F determined by
forces equivalent to the action of the rejected parts F =P (x+dx)-P(x) along

the axis of the rod x. In order to preserve the general logic of presentation, it is
assumed that the material line has an infinitesimal cross-sectional area A s. Weight

of cut element dm=pAsdx where p - bulk density of line material. Let
u(x,7 ) displacement of a material line point with coordinate X at a point in time
t, then the acceleration of the selected element is determined by the formula

2
a= % The above relations determine the equation
T
2
P(x+d x,r)—P(x,r)szsa u(>2<,r) )
dx ot
2
or azig’;)zpa g(r)z(r) Injection voltage o (x,7 )= P(AXS’T), brings
the equation to the form:
do(x,7) o%u(x,7)
= 2
ox  © ol @

If the stresses are caused by linear elastic deformations, then, based on
Hooke’s law, the relation holds: o-(x,r)zEg(X,z') where E - modulus of

elasticity of the first kind of material line, 8(X’T):% - longitudinal
X
relative deformation.
As a result, equation (1) will take the classical form:
0 ou(x,z o%u(x,z
2((e2ulan)) ,ouler) .
oX oX ot

If E =const, p=const then the equation can be rewritten as:
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82u(X,1):82U(X17)WhereCZ\/E (4)
Yo,

ox? c?or?

Euler's analysis of equation (4) shows:
- the solution to the equation can be presented in the form:
u(x,z)="f,(x-cr)+f (x+cr)

where f,(x-cz), f_(x+cz) - indeterminate functions of displacements of

points of a material line under the influence of longitudinal oscillations moving in
the positive and negative directions of the coordinate axis, respectively;

- ¢ —velocity of propagation of longitudinal vibrations;

- longitudinal vibrations move in a homogeneous material line without
distortion of shape and attenuation.

In order to generalize the equation to the case of longitudinal vibrations of
inhomogeneous rods, the hypothesis of flat sections was introduced: the sections of
the rods remain flat during longitudinal vibrations. The consequences of the
hypothesis can be formulated as follows:

- all points of the cross section of a straight rod during longitudinal
vibrations have the same displacements, velocities, accelerations;

- in the vicinity of the section the stresses and relative strains are equal.

A

Fig. 2. Calculation scheme for models of longitudinal dynamic deformation of rods

Equation (2) in this case will determine the dynamics of element B of the rod
in the direction of the coordinate axis of the cross sections x .

If we assume that the rod has a variable cross-sectional area s(x ), then

2
equation (1) will be rewritten as: % =ps(x )% or
T

i[Es(x)Mj=PS(X)M ©®)

X O X or?

If E=const, p=const then the equation will be rewritten as
294
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2 2
d u(é,r)+ din(s(x))ou(xz) @ u(>2<,r)=O ©)
OX d x O X ot

A model of longitudinal vibrations of a rod can be constructed on the basis
of the theorem on the change in momentum for a continuous medium, while
maintaining the hypothesis of plane sections and the method of sections. To do
this, select a rod element limited by the lateral surface and arbitrary flat cross
sections with coordinates x, and X,, X, > X, length | =x, —x,. In this case, the

equation for longitudinal vibrations of a rod of variable cross-section is obtained in
integral-differential (balance) form:

e (o) 2T o) ) )2l )y

X1

If the upper limit is considered variable x, = x, then differentiation by the

upper limit of both parts (7) leads to the model equation according to the
hypothesis of plane sections (5).

The equation in the form (7) can give more accurate results when solving
problems using numerical methods, when the continuous domain of definition of
the displacement function u( x,z ) replaced by a discrete mesh. For example, when

solving by the finite difference method.

The above models do not take into account the experimentally established
law connecting linear relative deformations in the longitudinal and transverse
directions:

Er=—HEY ()

where u - Poisson's ratio; ¢, - relative deformation in axial direction; &, -

relative deformation in the radial direction.

One of the options for taking this law into account is the introduction of the
Rayleigh correction, which takes into account the kinetic energy of the radial
motion of the particles of the rod. While maintaining the hypothesis of plane
sections and the section method, the model with the Rayleigh correction is usually
built on the Hamilton-Ostrogradsky variational principle: The actual motion of a
system with holonomic connections differs from other kinematically possible
movements in that for it the variations of the action according to Hamilton-

Ostrogradsky, specific for an arbitrary period of time W = I Ldz equal to zero

To

1) jL dz=0, L=T-11 - Lagrange function, determined by the difference
between the kinetic N and potential TT energies of the system.

The Lagrange function is determined for a rod element limited by two cross
sections of length L. The result is:
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5jjg[ps<x)[%j”f+pyzw{wjz-

! 0X 0T

—Es(x)[%}z}dxdrzo

which is equivalent to the condition for the extremum of the functional:

_ofoL | _afor], o® [aL] g
OX | O&, or | OV OXor | OV,

Accordingly, the equation of longitudinal dynamic deformation of a rod of
variable cross-section takes the form:

20 |- s() ),

O X O X or?

+pﬂzé%(3p(9)%£g£%)J=o ©)

The Rayleigh correction, in relation to the equation of longitudinal vibrations
according to the hypothesis of plane sections (3), adds a term linearly related to the
fourth-order derivative

+¢7uzé%(3p(p)§iEL&1)J

oxor?

This correction takes into account, to some extent, the geometry of the cross
section of the rod through the function of the polar moment of inertia J , (p ). The

equation can be simplified if the mechanical properties of the material E and p

do not depend on the section coordinates x and time z. At zero Poisson's ratio, the
Rayleigh correction is reduced to zero.

Relatively few solutions to problems using this model are known due to its
complexity.

The mechanics of a solid deformed body determines the dynamics of
element B in the Cartesian coordinate system in displacements by the following
system of equations:

ou 1

axXZE ox-ul(o,+o,)] (10)
P! 0

Symglosulovo)]  Tregloi-ulore,)] @D
Z'Xy 6uy aux TyZ auz+a& sz auX auZ

= + (12)
G o X oy G oy 0z G oz oX
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oo, 0r, 0r,  0°u, 13
+ + =
ox 0y oz P or
2 2
dty, 0o, 0Oz, 0°u, 0Jtr, 0Jr, 0o, 0°u, (1)

+ = + + =
ox oy oz Parr ox oy oz For

where o, - stress in the direction normal k to the section; z;, - shear stress in
direction j in section with the normal k ; u, - point displacement in direction k ;

G - shear modulus, or second modulus of elasticity.
ot 07, d%u

X Xy

0
The equation (12 + + =
a (12) ox 0y oz P o

2
dynamics of element B as well as the equation (2) 8aa(x,r)=pa ;()2”)
X T

determines the

according to the hypothesis of plane cross sections.

That is, models based on the hypothesis of flat sections do not take into
account at least tangential stresses.

Research results. To construct a model of longitudinal vibrations of rods
from system (10)-(14), we apply the method of successive approximation. The
basic statement is that the components of the radial stress in the zero approximation
are equal to zero: o, =0, o,=0. With static longitudinal deformation of the

rod, this statement is certainly true, as follows from the full formulation of Hooke's
law. In the case of dynamic longitudinal deformation, the statement can only be
accepted as a zero approximation. The basic statement is obviously only
approximately true, so calling the basic statement a hypothesis is apparently
incorrect due to its obviously approximate nature.

To construct a rod model, equation (12) for element B is integrated over the
volume of element A of the rod:

2 (jxoxdsx+ _[ a;”dsx+ J a;”ds - Z|.,oa;uxdsx=0 (15)

2
) sx) Y (s(x) sy 97

where d s, - area of the element face B perpendicular to the coordinate axis of the
Cross sections x.

82
“(yrea?)]ds, |+ 2 —ue Ty | [ ds,+
oy oX
(s(x))
8%u o%u
_,_i _ﬂG—zxz J.dsx—p—zx IdSX=O (16)
0z ox (sT0) 97" ()
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Integral .[ ds, =s(x) represents the cross-sectional area. To transform
(s(x ))
the integral J,,(x)= J‘ y2+2%)-(yZ+z2)]ds, distance is entered r

(s(x))
from the coordinate axis x to the point with coordinates y, z belonging to the

cross section with coordinate x: r? =y? +z2 and r, - distance from axis X toa

fixed point on the outer contour of the section, r2=yZ2 +z?2. If the section is a
circle, then r, determines the radius of the circle. As a result, the integral is

transformed to the form J,(x)= I rds,—r? I ds, Integral
(s(x)) (s(x))
J,(x)= j r?ds, determines the polar moment of inertia of the section,
(s(x)
therefore J 4, (x)=J,(x)-r2s(x). For a circular cross section, the polar

- . - - . _ 4 .
moment of inertia is given by:J , =7, /2 hence:
4 4
r r
2 2 _ *
Jdlkp(X)—ﬂ' > r>zr. =—rx

= Jdlrgv(x)=_‘]pkp(x)

Thus, the equation for longitudinal vibrations of the deformation of a rod of
variable cross-section according to this model, to a first approximation, takes the

form:
0 ou, o[ u? o%u, ou,
—| Es(x -— J G — —
8x( ( )axj ax{ 2 ‘“( ox® P oxor?
o%u o%u

—2uGs(x) axzx —ps(x) P

=0 (17)

The equation includes both the Rayleigh correction and a number of others
relative to the model based on the hypothesis of plane sections.

If we use the obtained formulas as initial ones and repeat the derivation
algorithm, we can obtain the equation of longitudinal vibrations in the second
approximation:

d ou, o [ wr(1-p) 85

—| Es(x - J G

6x( ( )axj 6x[ 48 oar{

) o°u, +L2 o°u, L0 o°u,

TP X% 02 G axoct ox 4 Toaal P oxtor

2 9°u, a3 o%u,

+'0_ 7 +i (1+/1)J ( ) G +
G oxor OX 2 ox3 6xar

p(1-24) 0 u, 2“x
#l-2p), G —2.46G -
T ‘“(X)( 3t Paxiact |2 s( 8x2

G

~=0 (18)
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where J 4,, (x [(y*+z*)-6(y2y2+222%)+5(yt+z})]ds,
s(x
Jgaa —22)ds, - geometric characteristics of flat
s(x
sections.

Discussion of scientific results. A comparison of equations (17) and (18)
shows that at the second step of approximation, all terms of the first approximation
are retained and terms containing derivatives of a higher order are added, which
determines the convergence of the model algorithm using the method of successive
approximation to arbitrarily accurate, in the limit, Eq.

To solve technical problems and compare all the above models, it is enough
to keep the terms including derivatives no higher than the second order:

ﬂ(Es(x)a;X

OX X

0%u o%u

]—Z,uGs(x) axzx —ps(x)

=0 (19)

When replacing u, on u( x,z ), taking into account the ratio
G=E/[2(1+u)], the equation will be rewritten as:

E o°u(x,z)  —ds(x)ou(xr) %u(x,7)
1+,uS(X dx? +E d x dx pslx) or? =0 (0)

If the rod is geometrically homogeneous, i.e. the cross section does not
change along the length, s(x)=const, then the equation is transformed to the
form:

E d8%u(xr) 0%u(xz)

1+u  ox? P

Il
o

(21)

coinciding, in structure, with the equation of longitudinal vibrations of a material
line. The model determines the speed of propagation of longitudinal vibrations

using a slightly different formula: ¢, =+/E/ [(1+ ), |, than according to the
hypothesis of plane sections c¢c=,/E/ p . For materials with zero Poisson's ratio,
4 =0, the equations for all models are the same.

When introducing a variable t=c, z, which can be interpreted as the

distance over which the dynamic deformation moves over time z, equation (20)
will be rewritten as:

() 2200t) (g ) B80e) 20l) g 2Pulnt)

ox? d x X ot?

or, in a more compact form:

a%u(xt) din(s(x))au(xt) au(xt)
dx? +(1+u) d x dx ot? 0 (22)
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Conclusion. For definiteness, equation (22) is proposed to be called ORN
(no radial stress) the equation of longitudinal vibrations of geometrically non-
uniform rods made of homogeneous material under linear elastic deformations. In
English: RSA (radial stresses are absent) equation of longitudinal vibration of rods
(bars).

In the case of inhomogeneities of various kinds, or a nonlinear dependence
of stresses on deformations, the algorithm for constructing the model is preserved
with appropriate adjustment of the initial equations of the system.
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A.A. MAcHuKoB

Kblproiz PecriybaukacelHbiH ¥ammeolK folaeim akademuscel, @U3UKA-MeXHUKAMbIK
macesnesnep uHcmumymel, biwkek K., Kbiprbiz Pecriybaukace!

FETEPOTEH/) ©3EKTEPAIH, GOM/NbIK TEPBENICTEPIHIH MOAENLAEPI TYPA/IbI

AHpatna. benrini 6ip KybbinbiCTapabl ecKkepe OTbIpbIN, WbIBbIKTapAbiH 60MbIK
Tepbenici mopeniHiH, Herisri epexenepi KepceTinreH. MyleaeH e3eKkTepAaiH 60MNbIK
TepbenicTepiHiH, MOZeniH Kypy YWiH ASMEKTI KyblKTay a4ici KongaHblnasl. Mogaenbaep
yw Kypamgac 6esiikke HerisgenreH: Herisri 3aH, Hemece gMHAMMKa NPUHLMAI, rMnoTesa
Hemece Heri3ri Masiimgeme, KypblabiC aArOpUTMI ici.

TipeK ce3gep: mogesnb, e3eK, 6onbiK Tepbenictep, reomeTpuAabIK NapameTpaep,
HblOTOH 3aHbl, KepHeyep, maTepuanbiH, TbiFbI3AbIFbI.

A.A. MacHuKos

HayuoHaneHasa akademus Hayk Keipaeidckoli Pecriybauku, UHcmumym ¢u3uxo-
mexHu4eckux npobsaem, 2. buwkek, Koipesiackas Pecrybauka

O MOJE/NAX NPOAONbHbBIX KONEBAHUIA HEOQHOPOLHBIX CTEPYHEM

AHHOTauMA. M310KeHbl OCHOBHbIE NOMIOXKEHWUA MOAENAN MPOAO/bHbIX KosebaHW
CTEPXKHEW C YYETOM Tex WM WHbIX fBAEHWA. [ NOCTPOEHUs MoZenn NpoAo/bHbIX
KonebaHUl CTEPIKHEN U3 CUCTEMbBI MPUMEHEH METOA NOCNeA0BaTeNbHOIO NPUBANMKEHUA.
Mopgenu OCHOBBIBAOTCA HA TPEeX COCTAaBAAOLWMX: OCHOBHOM 3aKOH MWAW NPUHLMA
ONHAMUWKW, TMnoTesa uan 6asoBoe yTBEPKAEHNE, METOA, a/ITOPUTMA NOCTPOEHMUS.

KntoueBble cnoBa: MoAesb, CTePXKeHb, NPOA0/IbHbIE KONebaHWA, reomeTpuyeckme
napameTpbl, 3aKOH HblOTOHa, HaNpsAXKeHUA, NJIOTHOCTb MaTepuana.
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